Разработка алгоритмов контроля и диагностики системы управления ориентацией космического аппарата
Страница 30

Тогда для построения системы оценки вектора состояния (jj, wj, mвj) примем следующую модель объекта наблюдения [16, 22, 27]:

(4.32)

где mj=МДСj /Jj - эффективность управляющего момента;

МДСj - управляющий момент ДС;

mвj=Мвj /Jj - эффективность возмущающего момента;

uj - сигнал управления ДС;

j=x, y, z.

Запишем систему уравнений (4.32) в стандартной векторно-матричной форме, дополнив ее уравнением измерений [7]:

где xj = (x1j, x2j, x3j)T=(jj, wj, mвj)T - вектор состояния;

zj - вектор измерений;

xj - шум измерений;

,

j=x, y, z.

Используя критерий Калмана, несложно показать, что такая система является полностью наблюдаема [7, 16, 22, 25, 26, 27]:

rank[HT ATHT (AT)2HT]=n=3, где n - порядок системы.

Реализация в бортовом вычислителе дискретного фильтра Калмана сводится к оценке вектора состояния по следующим соотношениям [25, 27]:

(4.33)

где: - оценка вектора состояния;

- переходная матрица для вектора состояния;

- матрица измерений;

- ковариационная матрица ошибок фильтрации;

- ковариационная матрица ошибок прогноза;

- матричный коэффициент усиления;

- ковариационная матрица шумов измерения;

j=x, y, z.

Работа алгоритма основана на анализе величины оцениваемого в фильтре Калмана возмущающего момента [25]. Если математическое ожидание оценки возмущающего момента, вычисленного на некоторой временной базе, где управление равно нулю, превосходит допустимый порог, то принимается решение об отказе ДС и переходе на резерв (рис. 4.7) [25].

Рис. 4.7 - Обобщенная структурная схема алгоритма

4.6 Метод статистически гипотез

Статистическая гипотеза - есть некоторое предположение относительно свойств [27, 28] генеральной совокупности, из которой извлекается выборка. Критерий статистической гипотезы – это правила позволяющие принять или отвергнуть данную гипотезу на основании выборки. При построении такого правила используются определенные функции результатов наблюдений , называемые статическими для проверки гипотез. Все возможные значения подобных статистик делятся на две части: если нет – гипотеза принимается, как не противоречащая результатам наблюдения, если да – гипотеза отвергается [27, 28, 29]. При этом всегда возможно совершить ошибку; различные типы возможных ошибок заданы в таблице 4.1:

Таблица 4.1

Гипотеза

Объективно верна

Объективно неверна

Принимается

Правильное решение

Ошибка ll рода

Отвергается

Ошибка l рода

Правильное решение

Страницы: 26 27 28 29 30 31 32 33 34