Разработка алгоритмов контроля и диагностики системы управления ориентацией космического аппарата
Страница 29

Рис. 4.4 - Фазовый портрет

Также вводятся дополнительные зоны нечувствительности: ,- нижняя и верхняя линии переключения, располагающиеся параллельно оси абсцисс. Они предназначены для «гашения» больших начальных угловых скоростей [25]. При пересечении этих линий изображающей точкой происходит включение (или выключение) исполнительных органов системы ориентации. Соответственно дополнительная зона нечувствительности находится между , и . Фазовый портрет при больших начальных угловых скоростях приведен на (Рис. 4.5)

Рис. 4.5 - Фазовый портрет с большими начальными угловыми скоростями

Также вводится гистерезис, - предназначенный для гашения шумов при «скольжении» фазовой диаграммы по линии переключения с наклоном -1/K [3].

Рассмотрим КА как упругое тело [1.3.6.7,9,10,11.12]. Уравнения осцилляторов для упругой модели имеет вид [5]:

(4.31)

где - коэффициент демпфирования для каждой отдельно взятой гармоники.

- квадрат собственной частоты не демпфированных колебаний для каждой гармоники. - управляющий момент с учетом возможного отказа. i = 1,2,3,4. Коэффициенты мы берем из таблицы, приведенной в Приложении А.

При нулевой правой части, мы получаем свободные колебания, зависящие от начальных отклонений, угловых скоростей и др. При ненулевой правой части мы получаем вынужденные колебания, которые накладываются на свободные колебания. Они являются затухающими со временем, в силу коэффициента демпфирования. Прототипом для данной упругой модели послужил маятник на пружинке. Рассматриваемая система является линейной.

Находим, также как для абсолютно твердого тела, угловые скорости, угловые ускорения, с учетом возможных отказов [25, 26].

Введем в имитационную модель космического аппарата наряду с двигателями большой тяги – двигатели малой тяги. Будем рассматривать двигатели дросселированной тяги, т.е. реактивные двигатели могут работать как с большой тягой, так и с малой. Введем дополнительную зону нечувствительности для двигателей большой тяги. Для более эффективного гашения шумов введем паузу по времени при выходе из зон нечувствительности. Для наглядности введем паузу Tp = 3 сек. Тогда, фазовый портрет для упругой модели, с учетом работы двигателей малой тяги и действующих на космический аппарат аэродинамического и гравитационного моментов, имеет вид (рис 4.6). Так как задана достаточно большая пауза, то процесс может, получился неустойчивым. Таким образом, очень важным фактором является правильный выбор паузы [25].

Рис. 4.6 - Фазовый портрет для большой паузы

Разработанный алгоритм позволяет моделировать сложные физические процессы с учетом внешних факторов действующих во время полета космического аппарата [1, 3, 25].

4.5 Решение задачи идентификации отказов

Алгоритм обработки данных в бесплатформенной инерциальной навигационной системе строится с использованием субоптимального дискретного фильтра Калмана [7, 16, 22, 25, 27].

Для малых угловых отклонений осей ССК от БСК и при условии Ix» Iy» Iz уравнения (1.1) и (1.2) запишем в виде [25]:

Страницы: 25 26 27 28 29 30 31 32 33