Разработка алгоритмов контроля и диагностики системы управления ориентацией космического аппарата
Страница 38

Предлагаемый в данной дипломной работе алгоритм контроля СУО основан на использовании субоптимального дискретного фильтра Калмана-Бьюси. Анализ величины оцениваемого в фильтре Калмана возмущающего момента позволяет вычислить математической ожидание оценки возмущения. Если математическое ожидание оценки возмущающего момента, вычисленного на некоторой временной базе, где управление равно нулю, превосходит допустимый порог, то принимается решение об отказе ДС и переходе на резерв. Как показало моделирование понижение остаточной тяги при отказе ДС в пять раз меньше, чем у существующих алгоритмов контроля, и составляет 10%. Это значительно повышает надежность СУО. А процент не выявления (10%) составляет процент внешних возмущающих воздействий, таких как аэродинамические и гравитационные. Это говорит о высокой эффективности разработанного алгоритма [25, 26].

Также в данной дипломной работе, разработан алгоритм контроля командных приборов ГИВУС и ДУП [21]. Отказ командным приборов может приводить к невыполнению целевой задачи СУ. Существующие алгоритмы имеют высокую погрешность при выявлении отказов чувствительных элементов. В основу существующих алгоритмов положен либо фильтр первого порядка, либо наблюдатель Люинбергера. Для повышения точности выявления отказавшего чувствительного элемента, в данной дипломной работе разработаны алгоритмы контроля командных приборов СУО, на основе субоптимального дискретного фильтра Калмана-Бьюси. Проведенное моделирование, показало высокую эффективность разработанного алгоритма по сравнению с существующими. В результате было повышено время выявления отказа чувствительный элемент, более точно выявляется отказавший чувствительный элемент [21, 25].

Разработанные алгоритмы контроля командных приборов и исполнительных органов в значительной мере повышают надежность системы управления ориентацией космического аппарата, и позволяют избежать потерь рабочего тела, и способствуют выполнению целевой задачи СУ. Это позволит снизить затраты на командные приборы и исполнительные органы, а также экономические затраты связанные с отказами в полете исполнительных органов и командных приборов [1, 3, 25].

6.2 Расчет сметы затрат на НИР

Выполнение научных исследований требует определенных затрат, которые необходимо рассматривать как дополнительные капиталовложения. Они относятся к производственным затратам и включают в себя все работы, выполняемые работниками организации [30].

При этом принимаем:

1) общее количество часов отладки и решения на ПВЭМ Т = 550 ч.

2) стоимость 1м2 площади в месяц Са = 35 грн.;

3) мощность ПВЭМ W = 0.4 кВт;

4) площадь помещения S = 13 м2 ;

5) стоимость электроэнергии 1 кВт/ч ТФ = 0,156 грн. (с ПДВ);

6) коэффициент невыходов а = 5%;

7) стоимость ПВЭМ Sk = 2900 грн.;

8) количество рабочих дней в месяц ДР = 23;

9) время работы на компьютере ТК = 4 мес.;

10) мощность осветительной электроэнергии Wоэ = 0,18 кВт;

11) время разработки НИР tр = 5 мес.

Рассчитаем эффективный фонд времени:

ТЭ = ДР * ТК *(1-а/100) = 87,4;

Расчет основной заработной платы исполнителей производится исходя из штатного расписания занятости исполнителей этой НИР, и приведен в таблице 6.1.

Расчет стоимости материала приведен в таблице 6.2.

Расчет сметы затрат на НИР с указанием формул расчета статей затрат приведен в таблице 6.3.

Таблица 6.1 – Штатное расписание исполнителей

Должность

Количество

исполнителей

Оклад в

месяц, грн.

Время

работы, мес.

Сумма,

грн.

Руководитель,

Начальник сектора

1

650

5  

3250  

Инженер-математик исследователь

1

450

5

2250

Лаборант

1

300

5

1500

Итого

7000

Страницы: 34 35 36 37 38 39 40 41 42