Разработка алгоритмов контроля и диагностики системы управления ориентацией космического аппарата
Страница 23

Устройство, описываемое уравнением (4.4), производит оценку вектора х по замкнутому циклу и называется наблюдающим устройством идентификации или фильтром Льюинбергера [7, 16, 22].

Если ошибку оценивания определить как (4.5)

(4.5)

то эту ошибку можно находить из уравнения (4.6):

(4.6)

получаемого вычитанием уравнения (4.1) из уравнения (4.4). Выбрав коэффициенты усиления так, чтобы система (4.6) была устойчивой, получим при . Другими словами, с ростом t оценка стремится к оцениваемому вектору х(t) [7 , 16].

Если по измеренному сигналу z(t) объект (4.1) полностью наблюдаем, то выбором коэффициентов можно замкнутой системе (4.4) придать любое желаемое распределение корней, т.е. можно синтезировать наблюдающее устройство идентификации. Если же по выходному сигналу z(t) вектор состояния объекта х наблюдаем не полностью, то с помощью начальных условий можно оценить лишь наблюдаемую часть вектора состояния [22].

4.2 Алгоритм оценки угловой скорости

Построим систему оценки угловой скорости.

Имеем систему уравнений [1, 3]:

(4.7)

где - проекции мгновенной угловой скорости объекта на оси ССК,

- моменты инерции объекта,

- управляющий и возмущающий моменты соответственно,

i = x, y, z.

Вектор моментов является функцией . Таким образом, имеется три уравнения, связывающие шесть независимых функций .

Получим еще три уравнения при помощи кинематических уравнений, которые в кватернионной форме имеют вид [5]: (4.8)

Для малых углов имеем:

(4.9)

Запишем уравнения (4.7) с учетом (4.9):

(4.10)

Для построения системы оценки примем следующую модель объекта наблюдения:

где - оцениваемое приращение угла поворота,

u – вектор управления.

Пусть производится измерение приращения угла поворота qj:

где - фактический угол поворота объекта за такт БЦВМ.

Матрица Н из уравнения (4.8) имеет вид: [1 0 0].

Модель системы наблюдения (4.10) представим в форме Коши:

Тогда система (4.10) примет вид:

(4.11)

т.е. в векторной форме получим уравнение (4.7), где

Вектор состояния x(t) определяется решением векторно-матричного уравнения (4.7):

где Ф(t, t0) – фундаментальная матрица, являющаяся переходной для (4.7).

Страницы: 19 20 21 22 23 24 25 26 27