Полные лекции по аэродинамике и динамике полета. Часть 1Страница 4
1.3. Уравнение неразрывности
Как известно, плотность вещества в физике вводится предельным переходом: , где в механике сплошной среды следует понимать под Dm массу вещества, заключенную в объеме DW. Посмотрим, как будет выглядеть закон сохранения массы для произвольного подвижного объема сплошной среды, для которого . Из (1.12) тогда следует:
,
или в силу произвольности объема W:
. (1.16)
Это уравнение носит название уравнения неразрывности (непрерывности).
Рассмотрим частные случаи уравнения неразрывности. Для стационарного (установившегося) движения сплошной среды из (1.16) с учетом (1.7) следует:
, (1.17)
а если, кроме того, среда несжимаемая (, в том числе и неоднородная), то:
. (1.18)
Т.е. по теореме Остроградского-Гаусса (1.10) установившийся поток скорости несжимаемой среды (1.4) сквозь любую замкнутую поверхность равен нулю. Так как через боковую поверхность трубки тока по определению нет потока скорости, то поток через любое ее поперечное сечение одинаков: (1.19)
и численно равен объемному расходу сплошной среды. Отсюда можно сделать вывод: внутри объема несжимаемой сплошной среды трубки тока (а также линии тока) не могут ни начинаться, ни заканчиваться.
1.4. Безвихревое и вихревое движение
Движение сплошной среды в некоторой области называется безвихревым, если в ней = 0, и вихревым, если ¹ 0 хотя бы в части этой области, называемой вихрем.
|
Из определения (1.6) следует, что вихревое движение характеризуется наличием вращения каждой частицы. Этот факт иллюстрируется рис. 1, на котором крайние точки бесконечно малой частицы среды имеют разные скорости в силу наличия ненулевой величины . Если центр этой частицы покоится, а все другие частные производные скорости равны нулю, то очевидно, что ¹ 0 характеризует именно вращение бесконечно малой частицы среды. В безвихревом движении такого вращения нет и каждая частица среды совершает лишь поступательное движение. Вообще говоря, вихревое движение возникает в реальной природе, благодаря наличию границ (свободной поверхности, твердых стенок или твердых тел), а также явлению вязкости.
Примерами безвихревого движения могут служить:
— состояние покоя среды,
— поступательное движение,
— источник и сток (когда частицы среды выходят из точки или входят в нее строго по лучам),
— движение среды вокруг некоторого кругового цилиндра по концентрическим окружностям со скоростью, обратно пропорциональной расстоянию от оси цилиндра.
Примерами вихревого движения могут служить:
— плоский сдвиг (когда скорость частиц вдоль некоторой плоскости пропорциональна расстоянию от этой плоскости),