Гидро-климатические условия на космических снимкахСтраница 5
При проведении аэрокосмической съемки в целях создания или обновления топографических карт, а также для решения ряда задач комплексного изучения и картографирования природных условий и ресурсов необходимо иметь следующую информацию о состоянии вод исследуемой территории: во-первых, когда наблюдается фаза водности, уровни воды при которой находятся в пределах картографического интервала высот; во-вторых, какова продолжительность стояния уровней воды (число дней в году) в картографическом интервале высот. Последняя важна для оценки категории сложности съемки.
Для определения этих параметров на опорных гидрологических створах рек Сибири вычислены: картографический уровень воды; картографический интервал уровней воды; средняя годовая повторяемость уровней воды в картографическом интервале высот. Далее, по данным стандартных гидрологических наблюдений Гидрометеослужбы, установлено наилучшее время дистанционной съемки, т. е. месяцы, в которые наблюдалась наибольшая повторяемость уровней воды в оптимальной шкале высот. По полученным материалам построены карты наилучших сроков аэрокосмической съемки рек в картографических целях (рис. 71, 72). При этом выявлено, что продолжительность стояния уровней воды в картографическом интервале высот изменяется зонально и по высотным поясам, т. е. отражает общие географические закономерности гидрологического режима рек. Так, в пределах Среднесибирского плоскогорья на широте 55—60" этот параметр для рек местного стока равен приблизительно 100 дней, на широте 70°— 30 дней. В горах с увеличением высоты он уменьшается. Например, в северных предгорьях Саян он находится в пределах 80—90 дней, а в верхнем поясе гор сокращается до 30 дней в году.
Оптимальные сроки дистанционной съемки крупных, особенно зарегулированных рек, могут не совпадать со сроками съемки рек местного стока. В этих случаях целесообразна дополнительная съемка по маршрутам вдоль крупных рек. Возможно также использование материалов ранее выполненных аэрокосмических съемок, удовлетворяющих поставленным требованиям. Этот вариант более экономичный, так как космические съемки ведутся несколько раз в год, а плановые деформации русел рек за 1—2 года в большинстве случаев не превышают графическую точность даже крупномасштабных карт. При дистанционной съемке половодий и паводков на реках необходима оперативная информация территориальных управлений по гидрометеорологии, поскольку время их наступления и максимального развития находится в зависимости от гидрометеорологических условий конкретного года.
Годовой ход уровня воды озер в целом повторяет ход уровня воды рек. Поэтому сроки их аэрокосмической съемки практически совпадают.
Водохранилища, за исключением мелких, наносятся на топографическую карту при нормальном подпорном уровне воды. Аэрокосмическая съемка их должна выполняться после наполнения, что для большинства крупных водохранилищ Сибири отмечается в сентябре (Новосибирское водохранилище — в июле, Усть-Илимское — в августе). Уровни воды, близкие к НПУ, держатся практически до появления ледовых явлений. Как и для рек, для водохранилищ можно обозначить допустимые пределы высоты уровня воды во время дистанционной съемки. Такой интервал ΔА зависит от величины проектной сработки водохранилища А и вычисляется по формуле
ΔАвдхр=НПУ±0,1А.
Для отображения сезонной динамики береговой линии целесообразно наносить на карту положение уреза воды и при сработке водохранилищ. Поэтому дистанционная съемка их должна производиться в два срока, т. е. дополнительно еще весной, сразу после очищения воды ото льда. Для водохранилищ юга Сибири, это время обычно наступает в конце апреля-начале мая, для северных водохранилищ -во второй половине июня или в начале июля.
Дешифрирование вод на аэрокосмических фотоснимках
В связи с развитием дистанционных исследований методика тематического дешифрирования снимков быстро наполняется новым содержанием. Двигателем этого прогресса является практическая необходимость значительного расширения круга изучаемых природоведческих проблем (ресурсного, динамического, прогнозного и других направлений), а также внедрение автоматизированных систем обработки дистанционной информации, что требует более глубокого учета географических закономерностей и взаимосвязей между компонентами природной среды. Новые подходы, базирующиеся на комплексной интерпретации мелкомасштабных снимков, особенно заметны в космическом землеведении.