Разработка алгоритмов контроля и диагностики системы управления ориентацией космического аппаратаСтраница 8
В общем случае аналитического построения расчетной системы координат задача ориентации КА решается с привлечением информации блока акселерометров об ускорении центра масс КА, хотя в некоторых случаях удается разделить задачу угловой ориентации и задачу определения местоположения центра масс КА [1]. Возможность такого разделения определяется выбором расчетной системы координат. Типовыми могут являться инерциальная система и горизонтальные системы координат. БСО могут быть построены на базе двухстепенных гироскопов, одноосных гиростабилизаторов, трехстепенных гироскопов со свободным подвесом и других видов чувствительных элементов [21].
В БИНС для решения задачи навигации необходим пересчет (с помощью матрицы направляющих косинусов) проекций вектора кажущегося ускорения, замеренного в жестко связанных с КА осях, на инерциальные оси [1, 10].
Для получения матрицы ориентации (матрицы направляющих косинусов) оси чувствительности трехкомпонентного блока измерителей абсолютной угловой скорости (блока двухстепенных гироскопов) должны быть зафиксированы относительно соответствующих осей чувствительности блока акселерометров. При решении навигационной задачи в БИНС задача ориентации решается независимо от уравнений поступательного движения. При этом погрешности проекций кажущегося ускорения на инерциальные оси определяются как погрешностью измерений акселерометров, так и погрешностью вычисления матрицы ориентации [1, 9, 10, 12].
Если используются датчики углового положения, то ориентация измерительной системы, связанной с датчиками, относительно базовой системы координат определяется в результате непосредственных измерений и их обработки. Однако общим во всех случаях решения задачи ориентации является измерения жестко закрепленными на борту датчиками таких кинематических величин, как угол или угловая скорость (угловое ускорение), с помощью, например, двухстепенных или трехстепенных гироскопов или же разнесенных на заданной базе акселерометров [21]. При этом наличие измерителей линейных ускорений в схеме, а также информации о напряженности нецентрального гравитационного поля Земли позволяет решать для такого типа систем как задачу ориентации, так и навигации [1, 3, 9].
Возмущенный режим работы БСО — это режим, при котором учитываются инструментальные погрешности чувствительных элементов, определенные угловой скоростью и угловым и линейным ускорениями основания [1, 3, 9, 12]. Модели ошибок этих элементов содержат кинематические величины с коэффициентами, зависящими от конструктивных характеристик чувствительных элементов.
Для уменьшения ошибок в БСО используются, например, корпусы блока гироскопов в монолитном исполнении, в которых и размещаются двухстепенные гироскопы [21]. Это позволяет обеспечить достаточную жесткость осей, связанных с измерительными осями гироскопов, и необходимую точность ориентации этих осей. При решении задачи ориентации относительно инерциального пространства используются различного вида кинематические уравнения [1,3]. Сравнительная их характеристика показывает, что в общем случае вне конкретной схемы затруднительно отдать предпочтение как определенному виду кинематических уравнений, так и определенным параметрам угловой ориентации. Однако это не исключает рациональный выбор параметров ориентации в каждой конкретной схеме реализации БСО [9].
2.1 Бесплатформенные инерциальные навигационные системы
Развитие бескарданных (бесплатформенных) базовых систем отсчета стала вполне возможной после того прогресса вычислительной техники, который привел к появлению надежных бортовых цифровых вычислительных машин, обладающих нужным объемом памяти и достаточным быстродействием [15]. Это сделало возможным непрерывное интегрирование уравнений движения космического аппарата при сколь угодно сложном характере его движения, опираясь на показания, по сути, тех же датчиков первичной информации, что и используемые в платформах. Следовательно, в бесплатформенных системах громоздкие устройства подвеса со следящими приводами «заменяются» интегрированием уравнений движения [9, 15].