Разработка алгоритмов контроля и диагностики системы управления ориентацией космического аппаратаСтраница 44
Таблица 7.1
Экспозиционная доза | Расстояние от центра взрыва, км. | |||||
Тротиловый эквивалент | ||||||
Р |
Кл/кг | 20 кт | 100 кт | 1 Мт | 5 Мт | 10 Мт |
500 |
0,13 | 1,2 | 1,65 | 2,4 | 3,0 | 3,4 |
300 |
0,678 | 1,4 | 1,8 | 2,6 | 3,2 | 3,6 |
200 |
0,052 | 1,5 | 1,9 | 2,8 | 3,4 | 3,9 |
100 |
0,026 | 1,6 | 2,1 | 3,0 | 3,6 | 4,2 |
50 |
0,013 | 1,8 | 2,25 | 3,2 | 3,8 | 4,5 |
Радиационные повреждения. При воздушных (приземных) и наземных ядерных взрывах плотности потоков (дозы) проникающей радиации на тех расстояниях, где ударная волна выводит из строя здания, сооружения, оборудование и другие элементы производства, в большинстве случаев для объектов являются безопасными. Но с увеличением высоты взрыва все большее значение в поражении объектов приобретает проникающая радиация. При взрывах на больших высотах и в космосе основным поражающим фактором становится импульс проникающей радиации. Проникающая радиация может вызывать обратимые и необратимые изменения в материалах, элементах радиотехнической, электротехнической, оптической и другой аппаратуры. В космическом пространстве эти повреждения могут наблюдаться на расстояниях десятков и сотен километров от центра взрывов мегатонных боеприпасов [31].
Необратимые изменения в материалах вызываются нарушениями структуры кристаллической решетки вещества вследствие возникновении дефектов (в неорганических и полупроводниковых материалах), а также в результате прохождения различных физико-химических процессов. Такими процессами являются: радиационный нагрев, происходящий вследствие преобразования поглощенной энергии проникающей радиации в тепловую; окислительные химические реакции, приводящие к окислению контактов и поверхностей электродов; деструкция и «сшивание» молекул в полимерных материалах, приводящие к изменению физико-механических и электрических параметров; газовыделения и образование пылеобразных продуктов, которые могут вызвать вторичные факторы воздействия (взрывы в замкнутых объемах, запыление отдельных деталей приборов и т. д.). В результате радиационного захвата нейтронов возможно образование примесей радиоактивных веществ. В процессе распада образовавшихся радиоактивных ядер происходит радиационное излучение, которое может оказывать воздействие на электрические параметры элементов и схем, а также затруднять ремонт и эксплуатацию аппаратуры. Наиболее опасны по вторичному излучению изделия, изготовленные из материалов, содержащих бор, марганец, кадмий, индий, серебро и др [31, 32].