Композиционные материалы

Композиционные материалы на неметаллической основе обладают хорошей технологичностью, низкой плотностью и высокой удельной прочностью и жесткостью. Среди неметаллических композиционных материалов наибольшее распространение получили композиции с полимерной матрицей: эпоксидной, фенолофор-мальдегидной и полиамидной.

В качестве упрочнителей используют высокопрочные и высокомодульные углеродные и борные, стеклянные и органические волокна в виде нитей, жгутов, лент, нетканых материалов. Жидкие эпоксидные смолы обладают лучшей среди других полимеров адгезией к наполнителям. Волокна обладают худшей адгезией. Энергию поверхности волокон для получения большей адгезии повышают различными методами обработки поверхности — травлением, окислением, вискеризацией.

Одним из способов улучшения свойств композиционных материалов является увеличение жесткости матрицы с помощью введения в ее структуру ионов металлов, которые усиливают взаимосвязь между полимерными молекулами.

Достоинством стекловолокнитов является недефицитность и низкая стоимость упрочнителя, недостатком — сравнительно низкий модуль упругости, но по удельной жесткости они превосходят легированные стали и сплавы на основе алюминия, магния и титана. Частичная замена стеклянных волокон на углеродные повышает жесткость композита. Однако временное сопротивление и удельная прочность при любом соотношении стекло- и углеволокон не достигает уровня стеклопластиков.
По прочности при растяжении стеклянные волокна равны или даже превосходят углеродные — основу многих компонентов с хорошими композиционными качествами.

Однако под действием высоких напряжений стекловолокно растягивается, и удлинение составляет несколько процентов. Поэтому в тех случаях, когда решающим фактором является жесткость в условиях высоких нагрузок, композиты, армированные стекловолокном, не применяют. Тем не менее низкая стоимость обусловила их широкое распространение при создании изделий, к которым предъявляются менее высокие требования по жесткости.

Для использования в изделиях, требующих высокой ударной прочности, более пригодны другие, отличные от углеродных, армирующие волокна.
Органоволокниты обладают высокой удельной прочностью в сочетании с хорошими пластичностью и ударной вязкостью. Особенностью их является единая полимерная природа матрицы и армирующих волокон. Матрица и наполнитель имеют близкие значения температурных коэффициентов линейного расширения, им свойственны химическое взаимодействие и прочная связь.

Эффективность армирования композита длинными волокнами, выше, чем короткими волокнами или частицами. Есть еще одна причина, по которой длинные волокна стали основным армирующим элементом в перспективных композитах — их ориентация поддается строгому контролю. Это дает возможность сконструировать внутреннее строение композита с учетом нагрузок, при которых он будет эксплуатироваться.

Внутренняя геометрия высокопрочного композита обычно напоминает строение фанеры: он состоит из тонких слоев, каждый из которых армирован волокнами, ориентированными в одном направлении. Такие слоистые структуры получают обычным способом производства перспективных композитов с полимерной матрицей — предварительной пропиткой лент или слоев и их сборкой вручную. Последовательные слои могут быть ориентированы в различных направлениях, что придает материалу прочность и жесткость в нескольких направлениях. Недостатком таких композитов является отсутствие поперечного армирования как между слоями, так и в одном слое. Под действием экстремальной нагрузки композит может расслоиться, а волокна внутри слоя разделиться. 

Смотрите также

Конкуренты не дремлют
Между тем иностранные конкуренты наших дирижаблестроителей проявляют большую активность на новом рынке. Есть опасения, что, если не начать воплощать отечественные проекты дирижаблей «в железо&ra ...

Основные преимущества
Основные преимущества самолета с аэростатической разгрузкой перед обычным самолетом: - посадка и взлет с любой естественной земной поверхности: море, озеро, река, болото, сельскохозяйственное поле, вз ...

Учебный
Первый дирижабль России "Учебный" - 1908 г. Дирижабль "Учебный" построен в России в 1908 году. Объем оболочки 2.000 куб.м., длина 40 м, диаметр 6,6 м, макс. скорость 21 км/ч.&nbs ...