Книга Черные дыры и Вселенная
Страница 46

Понять это не так уж сложно. В самом деле, представим себе, что мы взяли отрезок единичной длины и положение каждой точки характеризуем расстоянием ее от левого конца, принятого за ноль. Эти расстояния будем записывать в виде десятичной дроби. Точнее, положение каждой точки записывается, вообще говоря, в виде бесконечной десятичной дроби, у которой после запятой имеется бесконечный ряд десятичных знаков. Конечно, в исключительных случаях все знаки начиная с некоторого могут оказаться нулями.

Представим далее, что вопреки нашему утверждению кому-то удалось перенумеровать точки этого отрезка. Тогда мы выпишем десятичные дроби, характеризующие положения этих точек на отрезке, в порядке их номеров в виде таблицы. В первой строчке запишем бесконечную дробь для положения точки, получившей первый номер, во второй строчке бесконечную дробь для точки, получившей второй номер и т. д. Наша таблица может выглядеть, например, так:

0,32869700833

0,91967138452

0,00063700114 .

.

Покажем, что обязательно есть точка отрезка, не вошедшая в этот список, и, следовательно, список неполон.

Для того чтобы записать десятичную дробь, характеризующую положение этой точки на отрезке, поступим следующим образом. Запишем первым знаком после, запятой в десятичной дроби, любую цифру, отличающуюся от первой цифры после запятой в первой строчке нашей таблицы (то есть в нашем примере не 3, а, скажем, 5). Вторую цифру в нашей дроби запишем любую, но отличающуюся от второй цифры во второй строчке таблицы (в нашем, примере не 1); и так далее, будем поступать до бесконечности., Ясно, что, мы получим дробь, которой нет в нашем списке. Действительно, она не, совпадает с первой строчкой, так как заведомо отличается, первая цифра после запятой, не совпадает со второй строчкой, так как заведомо отличается вторая цифра после запятой и т. д.

Точка, расстояние которой записано этой дробью”, пропущена в нашем бесконечном списке и, значит, не имеет номера.

Казалось бы, можно начать нумеровать с этой точки, а уж потом давать номера всем остальным. Как шутливо замечает голландский математик Г. Фрейденталь, именно так поступил человек, побившийся об заклад съесть 20 картофелин. Съев 19 из них и .чувствуя с.ебя не .в силах проглотить последнюю картофелину, этот человек со вздохом заметил: “С нее-то мне и следовало бы начать”.

Разумеется, если начать нумеровать с только что указаной точки, оставшейся без номера, то тем же способом можно найти другую точку, оставшуюся без номера ври новом способе нумерации.

Наверное, читатель несколько, устал от необходимости следить за необычным построением, но уж очень оно важно, и хотелось его привести для того, чтобы дать хоть немного почувствовать, насколько необычные свойства мы встречаем в царстве бесконечности.

Итак, точек на единичном отрезке прямой заведомо больше, чем бесконечных чисел натурального ряда. Математики говорят, что бесконечность точек на отрезке прямой более мощная, чем бесконечность чисел натурального ряда.

Значит, бесконечности не все одинаковые. Среди них есть более мощные, то есть более богатые элементами, и менее мощные.

Казалось бы, количество точек на всей прямой заведомо больше, чем количество точек на единичном отрезке. Ведь отрезок — часть прямой. Но мы уже осторожны и помним, что в царстве бесконечности тезис “часть меньше целого” не работает. И действительно, мощности бесконечного числа точек прямой и отрезка одинаковы. Это одинаковые бесконечности!

Более того, бесконечность числа точек на всей плоскости и даже во всем трехмерном пространстве той же мощности, что и на отрезке прямой. Все это одинаковые бесконечности. Может возникнуть подозрение, что раз множество точек всего бесконечного пространства не больше множества точек отрезка, то вообще не существует бесконечного множества еще более мощного. И эта бесконечность наибольшая.

Но это не так. Математики умеют строить множества все более и более мощные, то есть строить все большие и большие бесконечности. Нет наибольшей бесконечности, этот ряд тоже бесконечен.

Страницы: 42 43 44 45 46 47 48 49 50