Исследование влияния зоны захвата при работе лазерного гироскопаСтраница 1
InherРазработка и исследование методов уменьшения влияния зоны захвата при работе лазерного гироскопа.
В сочетании с акселерометрами лазерные гироскопы (ЛГ) нашли широкое применение в бесплатформенных инерциальных навигационных системах (БИНС), позволяющих с высокой точностью определять углы ориентации подвижного объекта.
Главной проблемой при работе ЛГ является наличие зоны захвата, которая определяется качеством отражающих зеркал. Увеличение коэффициента отражения связано с большими материальными затратами и технологическими трудностями.
Наибольшее распространение для борьбы с зоной захвата получил метод так называемой «вибрационной частотной подставки» (ВЧП). При этом методе ЛГ закрепляется на упругом подвесе и с помощью электромагнитного или пьезоэлектрического моментного устройства подвергается принудительным угловым колебаниям.
На сегодняшний день практически единственным способом снижения зоны захвата является амплитудная модуляция колебаний резонатора квазислучайной периодической функцией (ошумление частотной подставки). Модулирующая функция выбирается таким образом, что амплитуды колебаний оказываются нормально распределенными, а их автокорреляционная функция быстро затухает.
Основным недостатком ВЧП является то, что при прохождении резонатором в процессе колебаний зоны малых скоростей возникают погрешности, вызываемые захватом, при постоянной частотной подставке эти погрешности приводят к постоянному дрейфу, зависящему от измеряемой скорости, а при ошумлении - к случайным погрешностям, близким к белому шуму.
Поскольку сигналы ЛГ, как правило, используются после интегрирования, интегрируются и рассматриваемые погрешности. Как известно, интеграл белого шума является нестационарным процессом, дисперсия которого линейно растет со временем. Таким образом, в составе сигнала прибора появляется возрастающая по закону t0.5- погрешность, которая определяет точность прибора.
С целью исследования характера поведения зоны захвата при работе с вибрационной частотной подставкой была предложена модификация уравнения классического уравнения ЛГ гироскопа.
y/+W0sinY= W1+ W2sin(nt) (1),
где W0- граница полосы синхронизации в отсутствии колебаний ВЧП; W1- измеряемая скорость, вызванная вращением лазера; W2- амплитуда колебаний ВЧП; n- частота колебаний подставки.
Второй член в левой части уравнения отражает влияние захвата, которое сводится к нелинейному демпфированию процесса. При этом в зависимости от разности фаз двух встречных волн возможно как демпфирование, так и антидемпфирование.
Для анализа влияния зоны захвата в уравнение (1) была включена случайная ВЧП. При наличии частотной подставки влияние захвата проявляется, в основном, при малых угловых скоростях, т.е при максимальных отклонениях резонатора от положения равновесия. Следовательно, логично ожидать, что на данном такте частотной подставки погрешности формируются во время прохождения резонатором амплитудных значений угла. Это предположение было подтверждено для нулевой угловой скорости. Показано, что в районе механических экстремумов (90о и 270о) ошибка максимальна. Данный факт обосновывает предположение о том, что ошибки, из-за которых формируется белый шум в сигнале ЛГ, возникают в моменты прохождения резонатором амплитудных значений угла колебаний. Следовательно, величина и знак погрешности на каждом такте ВЧП определяются положением амплитудных значений углов резонатора на фазовой плоскости оптических колебаний или, что то же самое, относительно итерференционной картины на фотоприемнике.
Ошибки измерения, особенно в районе механических экстремумов, определяют главную погрешность вносимою вибрационной частотной подставкой называемой случайным дрейфом. Для борьбы со случайным дрейфом предлагалось большое количество различных фильтров. Оптимальным в классе линейных является фильтр, реализующий простое осреднение сигнала. Предлагались также нелинейные фильтры, однако всегда оказывалось, что они недопустимым образом искажают сигнал. Практически единственным способом борьбы с рассматриваемой случайной составляющей погрешности в настоящее время является увеличение длительности наблюдения. Ошибка измерения угла растет пропорционально корню квадратному из времени, а погрешность определения угловой скорости падает по тому же закону.