Ионно-плазменные двигатели с высокочастотной безэлектродной ионизацией рабочего тела
Страница 1

Содержание

Введение

1. Сравнительный анализ ЭРДУ

1.1 Применение ЭРД

1.2 Применение РИД

1.3 Общие преимущества РИД

1.4 Радиочастотный ионный движитель РИД-10

1.5 Радиочастотный ионный движитель РИД-26

1.6 Радиочастотный двигатель с магнитным полем (РМД)

2 Разработка численной модели электроракетного двигателя с ВЧ нагревом рабочего тела

2.1 Математический аппарат численной модели термогазодинамических процессов, имеющих место в камере и сопловом аппарате ракетного двигателя

2.2 Термодинамические процессы, протекающие в камере электронагревного движителя

Заключение

Перечень условных обозначений, символов, единиц, сокращений и терминов

Список используемых источников информации

Введение

Как было показано последними исследованиями, энергетика (энергообеспечение) космических аппаратов с ресурсом 1-20 лет всегда будет первостепенной проблемой. Двигатели малых тяг, которые осуществляют коррекцию и стабилизацию таких космических аппаратов, обладают некоторыми особенностями, например, длительным ресурсом, высокой надежностью, оптимальной «ценой» тяги (отношение энергетических затрат к единице тяги). Для обеспечения долгосрочного ресурса необходимо уменьшить температуру конструктивных элементов плазменных движителей, плазма не должна взаимодействовать с элементами конструкции. В основном скорость истекающей плазмы (характеристическая скорость) определяет удельный импульс движителя. Чем больше значение характеристической скорости, тем больше и удельный импульс. Для осуществления длительных работ (программ) в космосе необходимо иметь надежные, высокоэффективные электроракетные двигатели со скоростями истечения плазмы 103-105 м/с и более.

Мы получили следующие результаты: при скоростях истечения рабочего тела 1000-9000 м/с термоэлектрические движители работают надежно, а в настоящее время создаются движители со скоростями истечения рабочего тела 2000-20000 м/с.

Использование электродуговых плазменных движителей для этих целей продемонстрировало, что в данном диапазоне скоростей негативные явления наблюдаются лишь вследствие эксплуатации движителя больше заданного времени ресурса.

Повышение температуры плазмы в движителях такого типа приводят к повышению удельного импульса. Но почти 50% электрической энергии подводимой к электродам, превращается в тепло и не участвует в повышении скорости плазменного пучка, а электроды испаряются (уменьшаются), что уменьшает ресурс движителя.

В нашем университете многие годы ведется детальная разработка таких движителей. Сравнение современных достижений по типовым движителям приведено в таблице 1.

Одним из современных направлений развития плазменных ускорителей является разработка двигателей малых тяг, работающих на принципе безэлектродного создания электромагнитной силы в форме ВЧ- и СВЧ-полей в плазменном объеме, удержании плазмы и ее ускорении в магнитном поле заданной формы. В этом случае предлагается концепция термоэлектрического движителя с высокочастотным нагревом рабочего тела, такого как водород. Это позволяет существенно уменьшить взаимодействие плазмы на элементы плазменного ускорителя, исключить потери энергии на электродах и использование магнитного сопла значительно повысят КПД движителя. Таким образом, преимущества этого типа движителей очевидны. Они заключаются в следующем:

- высокий КПД (0,4 – 0,5);

- длительный ресурс работы на борту (до 2-х лет);

- высокая надежность и безопасность;

- использование экологически чистого топлива;

- такие движители обеспечивают характеристическую скорость в требуемом диапазоне скоростей истечения, которую движители других типов не могут обеспечить;

- массовые характеристики, «цена» тяги и стоимость сборки не превышают существующих.

Это может стать возможным, если мы будем использовать некоторые достижения современной технологии и учтем некоторые нюансы:

1) Из всех рабочих тел водород обладает минимальной атомной массой, то есть скорость истечения водородной плазмы из ВЧ-ускорителя будет максимальной.

Страницы: 1 2 3 4 5